In a dose-finding study with an active control, several doses of a new drug are compared with an established drug (the so-called active control). One goal of such studies is to characterize the dose-response relationship and to find the smallest target dose concentration d(*), which leads to the same efficacy as the active control. For this purpose, the intersection point of the mean dose-response function with the expected efficacy of the active control has to be estimated. The focus of this paper is a cubic spline-based method for deriving an estimator of the target dose without assuming a specific dose-response function. Furthermore, the construction of a spline-based bootstrap CI is described. Estimator and CI are compared with other flexible and parametric methods such as linear spline interpolation as well as maximum likelihood regression in simulation studies motivated by a real clinical trial. Also, design considerations for the cubic spline approach with focus on bias minimization are presented. Although the spline-based point estimator can be biased, designs can be chosen to minimize and reasonably limit the maximum absolute bias. Furthermore, the coverage probability of the cubic spline approach is satisfactory, especially for bias minimal designs.
Spline-based procedures for dose-finding studies with active control.
阅读:6
作者:Helms Hans-Joachim, Benda Norbert, Zinserling Jörg, Kneib Thomas, Friede Tim
| 期刊: | Statistics in Medicine | 影响因子: | 1.800 |
| 时间: | 2015 | 起止号: | 2015 Jan 30; 34(2):232-48 |
| doi: | 10.1002/sim.6320 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
