Leveraging molecular networks to discover disease-relevant modules is a long-standing challenge. With the accumulation of interactomes, there is a pressing need for powerful computational approaches to handle the inevitable noise and context-specific nature of biological networks. Here, we introduce Graphene, a two-step self-supervised representation learning framework tailored to concisely integrate multiple molecular networks and adapted to gene functional analysis via downstream re-training. In practice, we first leverage GNN (graph neural network) pre-training techniques to obtain initial node embeddings followed by re-training Graphene using a graph attention architecture, achieving superior performance over competing methods for pathway gene recovery, disease gene reprioritization, and comorbidity prediction. Graphene successfully recapitulates tissue-specific gene expression across disease spectrum and demonstrates shared heritability of common mental disorders. Graphene can be updated with new interactomes or other omics features. Graphene holds promise to decipher gene function under network context and refine GWAS (genome-wide association study) hits and offers mechanistic insights via decoding diseases from genome to networks to phenotypes.
Self-supervised graph representation learning integrates multiple molecular networks and decodes gene-disease relationships.
阅读:4
作者:Wang Yi, Sun Zijun, He Qiushun, Li Jiwei, Ni Ming, Yang Meng
| 期刊: | Patterns | 影响因子: | 7.400 |
| 时间: | 2023 | 起止号: | 2022 Dec 6; 4(1):100651 |
| doi: | 10.1016/j.patter.2022.100651 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
