BACKGROUND: Beta(2)-adrenoceptor agonists are effective bronchodilators. In vitro studies demonstrated long-lasting airway smooth muscle relaxation by salmeterol after washout, the quick disappearance of this effect in presence of antagonists and its recovery after antagonist removal. Current explanations invoke salmeterol accumulation in the membrane ('diffusion microkinetic' model) or the existence of salmeterol-binding 'exosites'. An alternative model based on 'rebinding' of a dissociated ligand to the receptor molecules also produces an apparent decrease in the ligand's dissociation rate in the absence of competing ligands. PURPOSE AND APPROACH: Computer-assisted simulations were performed to follow the receptor-occupation by a salmeterol-like ligand and a competing ligand as a function of time. The aptness of the models to describe the above in vitro findings was evaluated. KEY RESULTS: The 'diffusion microkinetic' model is sufficient to explain a long-lasting beta(2)-adrenoceptor stimulation and reassertion as long as the membrane harbors a high concentration of the agonist. At lower concentration, 'rebinding' and, in second place, 'exosite' binding are likely to become operational. CONCLUSIONS AND IMPLICATIONS: The 'rebinding' and 'exosite' binding mechanisms take place at a sub-cellular/molecular scale. Pending their demonstration by experiments on appropriate, simple models such as intact cells or membranes thereof, these mechanisms remain hypothetical in the case of salmeterol. Airway smooth muscle contraction could also be governed by additional mechanisms that are particular to this macroscopic approach.
Molecular mechanisms for the persistent bronchodilatory effect of the beta 2-adrenoceptor agonist salmeterol.
阅读:4
作者:Szczuka A, Wennerberg M, Packeu A, Vauquelin G
| 期刊: | British Journal of Pharmacology | 影响因子: | 7.700 |
| 时间: | 2009 | 起止号: | 2009 Sep;158(1):183-94 |
| doi: | 10.1111/j.1476-5381.2009.00296.x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
