Enterovirus 3C Protease Cleaves TRIM7 To Dampen Its Antiviral Activity

肠道病毒 3C 蛋白酶裂解 TRIM7 以抑制其抗病毒活性

阅读:4
作者:Wenchun Fan, Matthew B McDougal, John W Schoggins

Abstract

Mammalian TRIM7 is an antiviral protein that inhibits multiple human enteroviruses by degrading the viral 2BC protein. Whether TRIM7 is reciprocally targeted by enteroviruses is not known. Here, we report that the 3C protease (3Cpro) from two enteroviruses, coxsackievirus B3 (CVB3) and poliovirus, targets TRIM7 for cleavage. CVB3 3Cpro cleaves TRIM7 at glutamine 24 (Q24), resulting in a truncated TRIM7 that fails to inhibit CVB3 due to dampened E3 ubiquitin ligase activity. TRIM7 Q24 is highly conserved across mammals, except in marsupials, which instead have a naturally occurring histidine (H24) that is not subject to 3Cpro cleavage. Marsupials also express two isoforms of TRIM7, and the two proteins from koalas have distinct antiviral activities. The longer isoform contains an additional exon due to alternate splice site usage. This additional exon contains a unique 3Cpro cleavage site, suggesting that certain enteroviruses may have evolved to target marsupial TRIM7 even if the canonical Q24 is missing. Combined with computational analyses indicating that TRIM7 is rapidly evolving, our data raise the possibility that TRIM7 may be targeted by enterovirus evasion strategies and that evolution of TRIM7 across mammals may have conferred unique antiviral properties. IMPORTANCE Enteroviruses are significant human pathogens that cause viral myocarditis, pancreatitis, and meningitis. Knowing how the host controls these viruses and how the viruses may evade host restriction is important for understanding fundamental concepts in antiviral immunity and for informing potential therapeutic interventions. In this study, we demonstrate that coxsackievirus B3 uses its virally encoded protease to target the host antiviral protein TRIM7 for cleavage, suggesting a potential mechanism of viral immune evasion. We additionally show that TRIM7 has evolved in certain mammalian lineages to express protein variants with distinct antiviral activities and susceptibilities to viral protease-mediated cleavage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。