The electrowetting-induced detachment of droplets from solid surfaces is important for numerous applications in the fields of heat transfer and fluid mechanics. The forced oscillations of droplets on solid surfaces and their ability to detach are studied. In this study, the process is efficiently simulated by implementing a powerful methodology developed by our team. Our results agree with experiments showing that optimal detachment, in terms of actuation energy, is achieved when the application of voltage is synchronized with the spreading time of the droplet. Under these conditions, the droplet oscillates with a period close to that of a mirrored Rayleigh droplet. The relationship between the droplet's oscillation period and its physical properties is examined. During voltage-droplet synchronization, the droplet's ability to detach depends mostly on its contact angle, its viscosity, and the applied voltage. An energy analysis is also conducted, revealing how energy is supplied to the droplet by electrowetting-induced detachment.
Simulation of Electrowetting-Induced Droplet Detachment: A Study of Droplet Oscillations on Solid Surfaces.
阅读:3
作者:Theodorou Nicolas T, Sourais Alexandros G, Papathanasiou Athanasios G
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2023 | 起止号: | 2023 Nov 23; 16(23):7284 |
| doi: | 10.3390/ma16237284 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
