Estimation and Inference for the Mediation Proportion.

阅读:5
作者:Nevo Daniel, Liao Xiaomei, Spiegelman Donna
In epidemiology, public health and social science, mediation analysis is often undertaken to investigate the extent to which the effect of a risk factor on an outcome of interest is mediated by other covariates. A pivotal quantity of interest in such an analysis is the mediation proportion. A common method for estimating it, termed the "difference method", compares estimates from models with and without the hypothesized mediator. However, rigorous methodology for estimation and statistical inference for this quantity has not previously been available. We formulated the problem for the Cox model and generalized linear models, and utilize a data duplication algorithm together with a generalized estimation equations approach for estimating the mediation proportion and its variance. We further considered the assumption that the same link function hold for the marginal and conditional models, a property which we term "g-linkability". We show that our approach is valid whenever g-linkability holds, exactly or approximately, and present results from an extensive simulation study to explore finite sample properties. The methodology is illustrated by an analysis of pre-menopausal breast cancer incidence in the Nurses' Health Study. User-friendly publicly available software implementing those methods can be downloaded from the last author's website (SAS) or from CRAN (R).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。