A neutralizing nanobody-based liquid-phase blocking ELISA to assess the protective potency of Senecavirus A vaccine.

阅读:9
作者:Mu Suyu, Pan Songjia, Dong Hu, Wu Jinen, Zhang Yun, Yin Shuanghui, Wang Jianing, Wei Tian, Wen Xiaobo, Guo Huichen, Sun Shiqi
Senecavirus A (SVA) causes swine blister diseases in the crown of hooves, abortion syndrome, and increased mortality rates in piglets. Vaccination is the best defense against SVA infection. However, evaluations of the efficacy of SVA vaccines currently rely on challenging pigs with SVA, which is time-consuming, labor-intensive, and inconsistent with animal welfare mandates. To establish a replacement for the virus neutralization test (VNT) and SVA challenge tests, we developed a liquid-phase blocking enzyme-linked immunosorbent assay (nbLPB-ELISA) based on V1-VHH as the coating antibody (Ab) and biotinylated V1-VHH as the detection Ab. Under optimized conditions, the VNT and nbLPB-ELISA results were strongly correlated (Pearson R(2) = 0.84; p < 0.00001). Analysis of the LBP-ELISA and vaccine protection rate revealed that neutralizing Ab titers greater than 256 provided 100% protection, while titers of 64 and 128 offered 57.1% and 70% protection, respectively. The nbLPB-ELISA is a rapid, simple, safe, and cost-effective method of detecting SVA as a replacement for the SVA VNT and vaccine-challenge assays. KEY POINTS: • We evaluated a specific, high-affinity, and neutralizing nanobody-targeting SVA. • The developed nbLPB-ELISA can replace viral neutralization tests. • The nbLPB-ELISA is suitable to evaluate protective immunity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。