In ultrasonic-assisted machining, the synergistic effect of the cavitation effect and micro-abrasive particles plays a crucial role. Studies have focused on the investigation of the micro-abrasive particles, cavitation micro-jets, and cavitation shock waves either individually or in pairs. To investigate the synergy of shock waves and micro-jets generated by cavitation with micro-abrasive particles in ultrasonic-assisted machining, the continuous control equations of a cavitation bubble, shock wave, micro-jet, and micro-abrasive particle influenced by the dimensionless amount (R/R(0)), a particle size-velocity-pressure model of the micro-abrasive particle was established. The effects of ultrasonic frequency, sound pressure amplitude, and changes in particle size on micro-abrasive particle velocity and pressure were numerically simulated. At an ultrasonic frequency of 20 kHz and ultrasonic sound pressure of 0.1125 MPa, a smooth spherical SiO(2) micro-abrasive particle (size = 5 µm) was obtained, with a maximum velocity of 190.3-209.4 m/s and pressure of 79.69-89.41 MPa. The results show that in the range of 5-50 μm, smaller particle sizes of the micro-abrasive particles led to greater velocity and pressure. The shock waves, micro-jets, and micro-abrasive particles were all positively affected by the dimensionless amount (R/R(0)) of cavitation bubble collapse, the larger the dimensionless quantity, the faster their velocity and the higher their pressure.
Numerical study of the synergistic effect of cavitation and micro-abrasive particles.
阅读:2
作者:Fu Yingze, Zhu Xijing, Wang Jianqing, Gong Tai
| 期刊: | Ultrasonics Sonochemistry | 影响因子: | 9.700 |
| 时间: | 2022 | 起止号: | 2022 Sep;89:106119 |
| doi: | 10.1016/j.ultsonch.2022.106119 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
