Correlated Light-Serial Scanning Electron Microscopy (CoLSSEM) for ultrastructural visualization of single neurons in vivo.

阅读:5
作者:Hirabayashi Yusuke, Tapia Juan Carlos, Polleux Franck
A challenging aspect of neuroscience revolves around mapping the synaptic connections within neural circuits (connectomics) over scales spanning several orders of magnitude (nanometers to meters). Despite significant improvements in serial section electron microscopy (SSEM) technologies, several major roadblocks have impaired its general applicability to mammalian neural circuits. In the present study, we introduce a new approach that circumvents some of these roadblocks by adapting a genetically-encoded ascorbate peroxidase (APEX2) as a fusion protein to a membrane-targeted fluorescent reporter (CAAX-Venus), and introduce it in single pyramidal neurons in vivo using extremely sparse in utero cortical electroporation. This approach allows us to perform Correlated Light-SSEM (CoLSSEM), a variant of Correlated Light-EM (CLEM), on individual neurons, reconstructing their dendritic and axonal arborization in a targeted way via combination of high-resolution confocal microscopy, and subsequent imaging of its ultrastructural features and synaptic connections with ATUM-SEM (automated tape-collecting ultramicrotome - scanning electron microscopy) technology. Our method significantly will improve the feasibility of large-scale reconstructions of neurons within a circuit, and permits the description of some ultrastructural features of identified neurons with their functional and/or structural connectivity, one of the main goal of connectomics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。