This study aimed at optimizing carotenoid extraction using the macroalga Himanthalia elongata (L.) S.F.Gray as a model. Firstly, traditional extraction procedures were employed, using various solvents and temperatures to enhance the extraction conditions. Once the most effective extraction conditions were identified, the study transitioned to a more efficient and environmentally friendly approach, microwave-assisted extraction (MAE). By applying a three-parameter (solid-to-solvent ratio, temperature, and time) Box-Behnken design, the optimal extraction conditions were found to be a solid-to-solvent ratio of 1/13.6 g/mL at 60 °C for 15 min. Under these conditions, the predicted and experimental carotenoid contents were 2.94 and 2.12 µg/mL, respectively. Furthermore, an HPLC-DAD method was developed and validated for the characterization of carotenoids. β-Carotene was the predominant carotenoid in H. elongata, alongside fucoxanthin. The optimized MAE method was applied to other seaweeds, including Fucus vesiculosus L., Codium tomentosum Stackhouse, Gracilaria gracilis (Stackhouse) Steentoft, L.M.Irvine & Farnham, and Eiseinia bicyclis (Kjellman) Setchell. Among all, F. vesiculosus exhibited the highest carotenoid content compared to the others. This study concludes that MAE under optimized conditions is an effective and sustainable approach for carotenoid extraction, providing significant yields of bioactive compounds such as β-carotene and fucoxanthin, which have promising applications in enhancing human health and nutrition.
Sustainable Carotenoid Extraction from Macroalgae: Optimizing Microwave-Assisted Extraction Using Response Surface Methodology.
阅读:4
作者:Lopes Andreia, Correia-Sá LuÃsa, Vieira Mónica, Delerue-Matos Cristina, Soares Cristina, Grosso Clara
| 期刊: | Life-Basel | 影响因子: | 3.400 |
| 时间: | 2024 | 起止号: | 2024 Nov 30; 14(12):1573 |
| doi: | 10.3390/life14121573 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
