Spreading dilatation in rat mesenteric arteries associated with calcium-independent endothelial cell hyperpolarization.

阅读:4
作者:Takano Hiromichi, Dora Kim A, Spitaler Michaela M, Garland Chris J
Both ACh and levcromakalim evoke smooth muscle cell hyperpolarization and associated relaxation in rat mesenteric resistance arteries. We investigated if they could evoke conducted vasodilatation along isolated arteries, whether this reflected spreading hyperpolarization and the possible mechanism involved. Focal micropipette application of either ACh, to stimulate endothelial cell muscarinic receptors, or levcromakalim, to activate smooth muscle K(ATP) channels, each evoked a local dilatation (88 +/- 14%, n= 6 and 92 +/- 6% reversal of phenylephrine-induced tone, n= 11, respectively) that rapidly spread upstream (at 1.5 mm 46 +/- 19%, n= 6 and 57 +/- 13%, n= 9) to dilate the entire isolated artery. The local dilatation to ACh was associated with a rise in endothelial cell [Ca(2+)](i) (F/F(t = 0)= 1.22 +/- 0.33, n= 14) which did not spread beyond 0.5 mm (F/F(t = 0)= 1.01 +/- 0.01, n= 14), while the local dilatation to levcromakalim was not associated with any change in endothelial cell [Ca(2+)](i). In contrast, ACh and levcromakalim both stimulated local (12.7 +/- 1.2 mV, n= 10 and 13.5 +/- 4.7 mV, n= 10) and spreading (at 2 mm: 3.0 +/- 1.1 mV, n= 5 and 4.1 +/- 0.7 mV, n= 5) smooth muscle hyperpolarization. The spread of hyperpolarization could be prevented by cutting the artery, so was not due to a diffusible agent. Both the spreading dilatation and hyperpolarization were endothelium dependent. The injection of propidium iodide into either endothelial or smooth muscle cells revealed extensive dye coupling between the endothelial cells, but limited coupling between the smooth muscle cells. Some evidence for heterocellular spread of dye was also evident. Together, these data show that vasodilatation can spread over significant distances in mesenteric resistance arteries, and suggest this reflects an effective coupling between the endothelial cells to facilitate [Ca(2+)](i)-independent spread of hyperpolarization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。