Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial.

阅读:8
作者:Golino Hudson, Shi Dingjing, Christensen Alexander P, Garrido Luis Eduardo, Nieto Maria Dolores, Sadana Ritu, Thiyagarajan Jotheeswaran Amuthavalli, Martinez-Molina Agustin
Exploratory graph analysis (EGA) is a new technique that was recently proposed within the framework of network psychometrics to estimate the number of factors underlying multivariate data. Unlike other methods, EGA produces a visual guide-network plot-that not only indicates the number of dimensions to retain, but also which items cluster together and their level of association. Although previous studies have found EGA to be superior to traditional methods, they are limited in the conditions considered. These issues are addressed through an extensive simulation study that incorporates a wide range of plausible structures that may be found in practice, including continuous and dichotomous data, and unidimensional and multidimensional structures. Additionally, two new EGA techniques are presented: one that extends EGA to also deal with unidimensional structures, and the other based on the triangulated maximally filtered graph approach (EGAtmfg). Both EGA techniques are compared with 5 widely used factor analytic techniques. Overall, EGA and EGAtmfg are found to perform as well as the most accurate traditional method, parallel analysis, and to produce the best large-sample properties of all the methods evaluated. To facilitate the use and application of EGA, we present a straightforward R tutorial on how to apply and interpret EGA, using scores from a well-known psychological instrument: the Marlowe-Crowne Social Desirability Scale. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。