Gene regulation varies across different cell types and developmental stages, leading to distinct cellular roles across cellular populations. Investigating cell type-specific gene coexpression is therefore crucial for understanding gene functions and disease pathology. However, reconstructing gene coexpression networks from single-cell transcriptome data is challenging due to artifacts, noise, and data sparsity. Here, we present an efficient method for inference of gene coexpression networks via variance decomposition analysis (GCNVDA) to explore the underlying gene regulatory mechanisms from single-cell transcriptome data. Our model incorporates multiple sources of variability, including a random effect term $G$ to capture gene-level variance and a random effect term $E$ to account for residual errors. We applied GCNVDA to three real-world single-cell datasets, demonstrating that our method outperforms existing state-of-the-art algorithms in both sensitivity and specificity for identifying tissue- or state-specific gene regulations. Furthermore, GCNVDA facilitates the discovery of functional modules that play critical roles in key biological processes such as embryonic development. These findings provide new insights into cell-specific regulatory mechanisms and have the potential to significantly advance research in developmental biology and disease pathology.
Inference of gene coexpression networks from single-cell transcriptome data based on variance decomposition analysis.
阅读:11
作者:Lian Bin, Zhang Haohui, Wang Tao, Wang Yongtian, Shang Xuequn, Aziz N Ahmad, Hu Jialu
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 2; 26(4):bbaf309 |
| doi: | 10.1093/bib/bbaf309 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
