Inference of gene coexpression networks from single-cell transcriptome data based on variance decomposition analysis.

阅读:4
作者:Lian Bin, Zhang Haohui, Wang Tao, Wang Yongtian, Shang Xuequn, Aziz N Ahmad, Hu Jialu
Gene regulation varies across different cell types and developmental stages, leading to distinct cellular roles across cellular populations. Investigating cell type-specific gene coexpression is therefore crucial for understanding gene functions and disease pathology. However, reconstructing gene coexpression networks from single-cell transcriptome data is challenging due to artifacts, noise, and data sparsity. Here, we present an efficient method for inference of gene coexpression networks via variance decomposition analysis (GCNVDA) to explore the underlying gene regulatory mechanisms from single-cell transcriptome data. Our model incorporates multiple sources of variability, including a random effect term $G$ to capture gene-level variance and a random effect term $E$ to account for residual errors. We applied GCNVDA to three real-world single-cell datasets, demonstrating that our method outperforms existing state-of-the-art algorithms in both sensitivity and specificity for identifying tissue- or state-specific gene regulations. Furthermore, GCNVDA facilitates the discovery of functional modules that play critical roles in key biological processes such as embryonic development. These findings provide new insights into cell-specific regulatory mechanisms and have the potential to significantly advance research in developmental biology and disease pathology.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。