Pressure-Stable Imprinted Polymers for Waste Water Remediation.

阅读:3
作者:Mann Shane, Johnson Travis, Medendorp Evie, Ocomen Robert, DeHart Luke, Bauer Adam, Li Bingbing, Tecklenburg Mary, Mueller Anja
In wastewater treatment, the removal of heavy metal ions is difficult. Ion exchange resins are ineffective since heavy metal ions cannot compete with "hard ions" in binding to the resins. Imprinting polymerization can increase the specificity of ion exchange resins to allow heavy metal ions to compete. Unfortunately, a high capacity is also needed. When high porosity and surface area are used to increase capacity, polymeric resins lose pressure stability needed for water treatment. In this research, a bulky, hydrophobic co-monomer was used to prevent Zn(+2) imprinted sites from collapsing. Both the co-monomer and crosslinking density were optimized to allow for maximum pore access while maintaining pressure stability. IR and SEM studies were used to study phase separation of the hydrophobic co-monomer from the hydrophilic resin. Capacity was measured for just the imprinting ion first, and then in combination with a competing ion and compared with porosity and pore-size measurements. Capacity under pressure was also characterized. A resin with high capacity was identified that allowed for the heavy metal ion to compete while still maintaining pressure stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。