During their lives, insects must cope with a plethora of chemicals, of which a few will have an impact at the behavioral level. To detect these chemicals, insects use several protein families located in their main olfactory organs, the antennae. Inside the antennae, odorant-binding proteins (OBPs), as the most studied protein family, bind volatile chemicals to transport them. Pheromone-binding proteins (PBPs) and general-odorant-binding proteins (GOPBs) are two subclasses of OBPs and have evolved in moths with a putative olfactory role. Predictions for OBP-chemical interactions have remained limited, and functional data collected over the years unused. In this study, chemical, protein and functional data were curated, and related datasets were created with descriptors. Regression algorithms were implemented and their performance evaluated. Our results indicate that XGBoostRegressor exhibits the best performance (R(2) of 0.76, RMSE of 0.28 and MAE of 0.20), followed by GradientBoostingRegressor and LightGBMRegressor. To the best of our knowledge, this is the first study showing a correlation among chemical, protein and functional data, particularly in the context of the PBP/GOBP family of proteins in moths.
Insight into the Relationships Between Chemical, Protein and Functional Variables in the PBP/GOBP Family in Moths Based on Machine Learning.
阅读:9
作者:López-Cortés Xaviera A, Lara Gabriel, Fernández Nicolás, ManrÃquez-Troncoso José M, Venthur Herbert
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 5; 26(5):2302 |
| doi: | 10.3390/ijms26052302 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
