Evolution of Statistical Strength during the Contact of Amorphous Polymer Specimens below the Glass Transition Temperature: Influence of Chain Length.

阅读:4
作者:Boiko, Yuri, M
A comprehensive study of the statistical distribution of the auto-adhesion lap-shear strength (σ) of amorphous polymer-polymer interfaces using various types of statistical tests and models is a useful approach aimed at a better understanding of the mechanisms of the self-healing interface. In the present work, this approach has been applied, for the first time, to a temperature (T) range below the bulk glass transition temperature (T(g)(bulk)). The interest of this T range consists in a very limited or even frozen translational segmental motion giving little or no chance for adhesion to occur. To clarify this issue, the two identical samples of entangled amorphous polystyrene (PS) with a molecular weight (M) of 10(5) g/mol or 10(6) g/mol were kept in contact at T = T(g)(bulk) - 33 °C for one day. The as-self-bonded PS-PS auto-adhesive joints (AJ) of PSs differing in M by an order of magnitude were fractured at ambient temperature, and their σ distributions were analyzed using the Weibull model, the quantile-quantile plots, the normality tests, and the Gaussian distribution. It has been shown that the Weibull model most correctly describes the σ statistical distributions of the two self-bonded PS-PS AJs with different M due to the joints' brittleness. The values of the Weibull modulus (a statistical parameter) m = 2.40 and 1.89 calculated for PSs with M = 10(5) and 10(6) g/mol, respectively, were rather close, indicating that the chain length has a minor effect on the σ data scatter. The Gaussian distribution has been found to be less appropriate for this purpose, though all the normality tests performed have predicted the correctness of the normal distribution for these PS-PS interfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。