The coronavirus genome is transcribed by a replication-transcription complex (RTC) containing the RNA polymerase plus additional cofactors. The cofactor nsp8 is an important component of the RTC in both alpha and betacoronaviruses required for nsp12 polymerase activity, complex stability, and recruitment of other RTC cofactors. Here we use NMR and other biophysical methods to characterize the structural features and oligomeric state of full-length nsp8 in solution. We show that the C-terminal domain of nsp8 has molten-globule like intrinsic disorder, while the N-terminal domain retains its folded structure in the absence of binding partners. Our data also shows a concentration-dependent association of nsp8 into dimers and possibly tetramers, but not larger molecular weight species. Upon binding nsp7, the C-terminal domain of nsp8 folds into a well-defined conformation consistent with available structures of the complex, while the linker region connecting the N- and C-terminal domains remains disordered.
The C-terminal Domain of SARS-CoV-2 nsp8 is a Molten Globule in the Absence of Binding Partners.
阅读:4
作者:Kurauskas Vilius, Tonelli Marco, Kirchdoerfer Robert N, Henzler-Wildman Katherine
| 期刊: | Journal of Molecular Biology | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Aug 19; 437(21):169400 |
| doi: | 10.1016/j.jmb.2025.169400 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
