Proportional mouse model for aerosol infection by influenza.

阅读:4
作者:McDonald R S, Sambol A R, Heimbuch B K, Brown T L, Hinrichs S H, Wander J D
AIMS: The aim of this study was to demonstrate a prototype tool for measuring infectivity of an aerosolized human pathogen - influenza A/PR/8/34 (H1N1) virus - using a small-animal model in the Controlled Aerosol Test System (CATS). METHODS AND RESULTS: Intranasal inoculation of nonadapted H1N1 virus into C57BL, BALB/c and CD-1 mice caused infection in all three species. Respiratory exposure of CD-1 mice to the aerosolized virus at graduated doses was accomplished in a modified rodent exposure apparatus. Weight change was recorded for 7 days postexposure, and viral populations in lung tissue homogenates were measured post mortem by DNA amplification (qRT-PCR), direct fluorescence and microscopic evaluation of cytopathic effect. Plots of weight change and of PCR cycle threshold vs delivered dose were linear to threshold doses of ~40 TCID(50) and ~12 TCID(50) , respectively. CONCLUSIONS: MID(50) for inspired H1N1 aerosols in CD-1 mice is between 12 and 40 TCID(50) ; proportionality to dose of weight loss and viral populations makes the CD-1 mouse a useful model for measuring infectivity by inhalation. SIGNIFICANCE AND IMPACT OF THE STUDY: In the CATS, this mouse-virus model provides the first quantitative method to evaluate the ability of respiratory protective technologies to attenuate the infectivity of an inspired pathogenic aerosol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。