Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications.

阅读:4
作者:Ren Bing, Song Kaidong, Sanikommu Anil Reddy, Chai Yejun, Longmire Matthew A, Chai Wenxuan, Murfee Walter Lee, Huang Yong
For an engineered thick tissue construct to be alive and sustainable, it should be perfusable with respect to nutrients and oxygen. Embedded printing and then removing sacrificial inks in a cross-linkable yield-stress hydrogel matrix bath can serve as a valuable tool for fabricating perfusable tissue constructs. The objective of this study is to investigate the printability of sacrificial inks and the creation of perfusable channels in a cross-linkable yield-stress hydrogel matrix during embedded printing. Pluronic F-127, methylcellulose, and polyvinyl alcohol are selected as three representative sacrificial inks for their different physical and rheological properties. Their printability and removability performances have been evaluated during embedded printing in a gelatin microgel-based gelatin composite matrix bath, which is a cross-linkable yield-stress bath. The ink printability during embedded printing is different from that during printing in air due to the constraining effect of the matrix bath. Sacrificial inks with a shear-thinning property are capable of printing channels with a broad range of filaments by simply tuning the extrusion pressure. Bi-directional diffusion may happen between the sacrificial ink and matrix bath, which affects the sacrificial ink removal process and final channel diameter. As such, sacrificial inks with a low diffusion coefficient for gelatin precursor are desirable to minimize the diffusion from the gelatin precursor solution to minimize the post-printing channel diameter variation. For feasibility demonstration, a multi-channel perfusable alveolar mimic has been successfully designed, printed, and evaluated. The study results in the knowledge of the channel diameter controllability and sacrificial ink removability during embedded printing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。