Linear mixed-effects (LME) models are commonly used for analyzing longitudinal data. However, most applications of LME models rely on random intercepts or simple, e.g., stationary, covariance. Here, we extend the Fast and Efficient Mixed-Effects Algorithm (FEMA) and present FEMA-Long, a computationally tractable approach to flexibly modeling longitudinal covariance suitable for high-dimensional data. FEMA-Long can i) model unstructured covariance, ii) model non-linear fixed effects using splines, iii) discover time-dependent fixed effects with spline interactions, and iv) perform genome-wide association studies (GWAS) supporting discovery of time-dependent genetic effects. We applied FEMA-Long to perform a longitudinal GWAS with non-linear SNP-by-time interaction on length, weight, and body mass index of 68,273 infants with up to six measurements in the first year of life. We found dynamic patterns of random effects including time-varying heritability and correlations, as well as several genetic variants showing time-dependent effects, highlighting the applicability of FEMA-Long to enable novel discoveries.
FEMA-Long: Modeling unstructured covariances for discovery of time-dependent effects in large-scale longitudinal datasets.
阅读:2
作者:Parekh Pravesh, Parker Nadine, Pecheva Diliana, Frei Evgeniia, Vaudel Marc, Smith Diana M, Rigby Alison, JahoÅkowski Piotr, Sønderby Ida Elken, Birkenæs Viktoria, Bakken Nora Refsum, Fan Chun Chieh, Makowski Carolina, Kopal Jakub, Loughnan Robert, Hagler Donald J Jr, van der Meer Dennis, Johansson Stefan, Njølstad PÃ¥l Rasmus, Jernigan Terry L, Thompson Wesley K, Frei Oleksandr, Shadrin Alexey A, Nichols Thomas E, Andreassen Ole A, Dale Anders M
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 15 |
| doi: | 10.1101/2025.05.09.653146 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
