Normal-distribution-based maximum likelihood (ML) and multiple imputation (MI) are the two major procedures for missing data analysis. This article compares the two procedures with respects to bias and efficiency of parameter estimates. It also compares formula-based standard errors (SEs) for each procedure against the corresponding empirical SEs. The results indicate that parameter estimates by MI tend to be less efficient than those by ML; and the estimates of variance-covariance parameters by MI are also more biased. In particular, when the population for the observed variables possesses heavy tails, estimates of variance-covariance parameters by MI may contain severe bias even at relative large sample sizes. Although performing a lot better, ML parameter estimates may also contain substantial bias at smaller sample sizes. The results also indicate that, when the underlying population is close to normally distributed, SEs based on the sandwich-type covariance matrix and those based on the observed information matrix are very comparable to empirical SEs with either ML or MI. When the underlying distribution has heavier tails, SEs based on the sandwich-type covariance matrix for ML estimates are more reliable than those based on the observed information matrix. Both empirical results and analysis show that neither SEs based on the observed information matrix nor those based on the sandwich-type covariance matrix can provide consistent SEs in MI. Thus, ML is preferable to MI in practice, although parameter estimates by MI might still be consistent.
ML versus MI for Missing Data with Violation of Distribution Conditions.
阅读:4
作者:Yuan Ke-Hai, Yang-Wallentin Fan, Bentler Peter M
| 期刊: | Sociological Methods & Research | 影响因子: | 6.500 |
| 时间: | 2012 | 起止号: | 2012 Nov;41(4):598-629 |
| doi: | 10.1177/0049124112460373 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
