The brains of high functioning autistic individuals do not synchronize with those of others.

阅读:5
作者:Salmi J, Roine U, Glerean E, Lahnakoski J, Nieminen-von Wendt T, Tani P, Leppämäki S, Nummenmaa L, Jääskeläinen I P, Carlson S, Rintahaka P, Sams M
Multifaceted and idiosyncratic aberrancies in social cognition characterize autism spectrum disorders (ASDs). To advance understanding of underlying neural mechanisms, we measured brain hemodynamic activity with functional magnetic resonance imaging (fMRI) in individuals with ASD and matched-pair neurotypical (NT) controls while they were viewing a feature film portraying social interactions. Pearson's correlation coefficient was used as a measure of voxelwise similarity of brain activity (InterSubject Correlations-ISCs). Individuals with ASD showed lower ISC than NT controls in brain regions implicated in processing social information including the insula, posterior and anterior cingulate cortex, caudate nucleus, precuneus, lateral occipital cortex, and supramarginal gyrus. Curiously, also within NT group, autism-quotient scores predicted ISC in overlapping areas, including, e.g., supramarginal gyrus and precuneus. In ASD participants, functional connectivity was decreased between the frontal pole and the superior frontal gyrus, angular gyrus, superior parietal lobule, precentral gyrus, precuneus, and anterior/posterior cingulate gyrus. Taken together these results suggest that ISC and functional connectivity measure distinct features of atypical brain function in high-functioning autistic individuals during free viewing of acted social interactions. Our ISC results suggest that the minds of ASD individuals do not 'tick together' with others while perceiving identical dynamic social interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。