iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies.

阅读:7
作者:Rojo Constanza, Zhang Qi, Keleş Sündüz
Genome-wide association studies (GWAS) have successfully identified thousands of genetic variants contributing to disease and other phenotypes. However, significant obstacles hamper our ability to elucidate causal variants, identify genes affected by causal variants, and characterize the mechanisms by which genotypes influence phenotypes. The increasing availability of genome-wide functional annotation data is providing unique opportunities to incorporate prior information into the analysis of GWAS to better understand the impact of variants on disease etiology. Although there have been many advances in incorporating prior information into prioritization of trait-associated variants in GWAS, functional annotation data have played a secondary role in the joint analysis of GWAS and molecular (i.e., expression) quantitative trait loci (eQTL) data in assessing evidence for association. To address this, we develop a novel mediation framework, iFunMed, to integrate GWAS and eQTL data with the utilization of publicly available functional annotation data. iFunMed extends the scope of standard mediation analysis by incorporating information from multiple genetic variants at a time and leveraging variant-level summary statistics. Data-driven computational experiments convey how informative annotations improve single-nucleotide polymorphism (SNP) selection performance while emphasizing robustness of iFunMed to noninformative annotations. Application to Framingham Heart Study data indicates that iFunMed is able to boost detection of SNPs with mediation effects that can be attributed to regulatory mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。