The development of highly efficient, effective, and low-cost carbon-based catalysts for hydrogen production through water electrolysis represents a significant challenge in sustainable energy conversion. In this work, carbon materials derived from biomass waste, specifically a metal-polluted vegetal species () from a former mining location, were used. Biomass was subjected to hydrothermal carbonization, producing hydrochar. The influence of both thermal and chemical post-treatment was studied in relation to hydrogen production efficiency. The thermal treatment was conducted at 300, 500, and 1000 °C, while the chemical precursors used were KOH and H(3)PO(4). Additionally, these waste-derived carbon materials were compared with carbon Vulcan XC-72, a common reference material in these processes originated from fossil sources. Several electrochemical techniques were employed to evaluate and identify the most suitable sample for the hydrogen evolution reaction (HER). Additionally, physicochemical characterization analyses were conducted to gain a comprehensive understanding of the morphology, composition, and surface structure of the biomass-derived carbon materials, as well as to establish correlations with their electrochemical behavior toward the HER. The sample that demonstrated the most favorable performance was the one chemically activated with KOH, which exhibited an outstanding Tafel slope (147 mV/dec) and a low overpotential at 10 mA/cm(2) (-550 mV vs RHE) surpassing even the commercial Vulcan XC-72 sample. Furthermore, the chronoamperometry test showed a very stable performance for this sample. These results demonstrate that plant biomass waste containing metals presents a viable alternative to carbon blacks, commonly used as electrocatalysts for hydrogen production, also providing an efficient and sustainable method to valorize these wastes.
Turning Polluted Biomass Waste into Sustainable Carbon-Based Catalysts for Hydrogen Production via Water Electrolysis.
阅读:5
作者:Comendador Jorge, Llanos Javier, RamÃrez Ãlvaro, Muñoz-Morales MartÃn, López-Fernández Ester
| 期刊: | Energy & Fuels | 影响因子: | 5.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 23; 39(31):15003-15015 |
| doi: | 10.1021/acs.energyfuels.5c02282 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
