Evolution of feedback-inhibited beta /alpha barrel isoenzymes by gene duplication and a single mutation.

阅读:5
作者:Hartmann Markus, Schneider Thomas R, Pfeil Andrea, Heinrich Gabriele, Lipscomb William N, Braus Gerhard H
The betaalpha barrel is the common protein fold of numerous enzymes and was proposed recently to be the result of gene duplication and fusion of an ancient half-barrel. The initial enzyme of shikimate biosynthesis possesses the additional feature of feedback regulation. The crystal structure and kinetic studies on chimera and mutant proteins of yeast 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase from Saccharomyces cerevisiae inhibited by phenylalanine (Aro3p) and DAHP synthase S. cerevisiae inhibited by tyrosine (Aro4p) give insight into important regions for regulation in the enzyme: The loop, which is connecting the two half-barrels, and structural elements added to the barrel are prerequisites for regulation and form a cavity on the N-terminal side of the betaalpha barrel. In the cavity of Aro4p at position 226 is a glycine residue, which is highly conserved in all other tyrosine-regulated DAHP synthases as well. Sequence alignments with phenylalanine-regulated DAHP synthases including Aro3p show a highly conserved serine residue at this position. An exchange of glycine to serine and vice versa leads to a complete change in the regulation pattern. Therefore the evolution of these differently feedback-inhibited isoenzymes required gene duplication and a single mutation within the internal extra element. Numerous additional amino acid substitutions present in the contemporary isoenzymes are irrelevant for regulation and occurred independently.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。