Numerical modeling and analysis of coaxial electrohydrodynamic jet printing.

阅读:3
作者:Wang Dazhi, Abbas Zeshan, Lu Liangkun, Zhao Xiangyu, Xu Pengfei, Zhao Kuipeng, Yin Penghe, Liang Junsheng
Coaxial electrohydrodynamic jet (CE-Jet) printing is an encouraging method for fabrication of high-resolution micro and nanostructures in MEMS systems. This paper presents a novel simulation work based on phase field method which is considered as a precise technique in fluid dynamics. The study explores influence of various parameters such as applied voltage, needle-substrate distance, dynamic viscosity, relative permittivity, needle size and flow rate on stability and resolution of CE-Jet morphologies. The morphology of CE-Jet exhibits that width of cone-jet profile and printed structures on substrate were directly proportional to relative permittivity and flow rate. In addition, it was inversely proportional to dynamic viscosity and applied voltage. The study examine that CE-Jet length of inner liquid is inversely proportional to needle-substrate distance in same time. It was later verified in experimental study by producing stable CE-Jet morphology with 300 μm diameter using optimized parameters (i.e., DC voltage 7.0 kV and inner liquid flow rate 400 nl/min) as compared to other validation studies such as 400 μm and 500 μm. The CE-Jet printing technique investigates significant changes in consistency and stability of CE-Jet morphologies and makes Jet unique and comparable when adjustment accuracy reaches 0.01 mm. PZT sol line structures with a diameter of 1 µm were printed directly on substrate using inner needle (diameter of 120 µm). Therefore, it is considered as a powerful tool for nano constructs production in M/NEMS devices.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。