The effective use of biodegradable polymers relies on the ability to control the onset of and time needed for degradation. Preferably, the material properties should be retained throughout the intended time frame, and the material should degrade in a rapid and controlled manner afterward. The degradation profiles of polyester materials were controlled through their miscibility. Systems composed of PLLA blended with poly[(R,S)-3-hydroxybutyrate] (a-PHB) and polypropylene adipate (PPA) with various molar masses were prepared through extrusion. Three different systems were used: miscible (PLLA/a-PHB5 and PLLA/a-PHB20), partially miscible (PLLA/PPA5/comp and PLLA/PPA20/comp), and immiscible (PLLA/PPA5 and PLLA/PPA20) blends. These blends and their respective homopolymers were hydrolytically degraded in water at 37 °C for up to 1 year. The blends exhibited entirely different degradation profiles but showed no diversity between the total degradation times of the materials. PLLA presented a two-stage degradation profile with a rapid decrease in molar mass during the early stages of degradation, similar to the profile of PLLA/a-PHB5. PLLA/a-PHB20 presented a single, constant linear degradation profile. PLLA/PPA5 and PLLA/PPA20 showed completely opposing degradation profiles relative to PLLA, exhibiting a slow initial phase and a rapid decrease after a prolonged degradation time. PLLA/PPA5/comp and PLLA/PPA20/comp had degradation profiles between those of the miscible and the immiscible blends. The molar masses of the materials were approximately the same after 1 year of degradation despite their different profiles. The blend composition and topographical images captured at the last degradation time point demonstrate that the blending component was not leached out during the period of study. The hydrolytic stability of degradable polyester materials can be tailored to obtain different and predetermined degradation profiles for future applications.
Tuning the degradation profiles of poly(L-lactide)-based materials through miscibility.
阅读:3
作者:Arias Veluska, Höglund Anders, Odelius Karin, Albertsson Ann-Christine
| 期刊: | Biomacromolecules | 影响因子: | 5.400 |
| 时间: | 2014 | 起止号: | 2014 Jan 13; 15(1):391-402 |
| doi: | 10.1021/bm401667b | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
