Statistical Inference for Alpha-Series Process with the Generalized Rayleigh Distribution.

阅读:4
作者:Demirci, Biçer, Hayrinisa
In the modeling of successive arrival times with a monotone trend, the alpha-series process provides quite successful results. Both selecting the distribution of the first arrival time and making an optimal statistical inference play a crucial role in the modeling performance of the alpha-series process. In this study, when the distribution of the first arrival time is the generalized Rayleigh, the problem of statistical inference for the α , β , and λ parameters of the alpha-series process is considered. Further, in order to obtain optimal modeling performance from the mentioned alpha-series process, various estimators for the model parameters are obtained by employing different estimation methodologies such as maximum likelihood, modified maximum spacing, modified least-squares, modified moments, and modified L-moments. By a series of Monte Carlo simulations, the estimation efficiencies of the obtained estimators are evaluated through the different sample sizes. Finally, two real datasets are analyzed to illustrate the importance of modeling with the alpha-series process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。