With the development of new concrete technology, high-strength concrete has been used worldwide. In particular, more economic benefits can be achieved by applying high-strength concrete-filled steel tube (HSCFST) columns in the concrete core walls of super high-rise buildings. A constitutive relation with high applicability for high-strength materials with different strength grades is proposed. Based on this constitutive model, a brick element model of 181 sets of axially compressed square HSCFST members is established and experimentally verified. The effects of the concrete strength, diameter-to-thickness ratio, and steel yield strength on the axial compressive capacities of these members were investigated based on finite element calculation results. The results showed that with an increase in the concrete strength, the ultimate bearing capacities of CS-CC, HS-HC, HS-CC, and CS-HC stub column members increased by 60%, 24%, 44%, and 21% at most, respectively. Additionally, as the steel yield strength increased, the ultimate bearing capacities of CS-CC, HS-HC, HS-CC, and CS-HC stub column members increased by 8.8%, 5.1%, 8.5%, and 5.2%, respectively, Hence, material strength has the greatest impact on CS-CC and HS-CC. The confinement effect of the square steel tube on the concrete weakens as the strength grade of steel or concrete increases. Notably, the confinement effect of steel tube on the concrete is strongest in CS-CC and weakest in the CS-HC. In addition, the confinement coefficients of square HSCFST stub columns with different combinations of concrete and steel strengths were analyzed. Based on the superposition principle in the ultimate state, a practical axial compressive capacity calculation formula for three types of square HSCFSTs is established. Compared with existing major design code formulas, the proposed formula is more accurate and concise and has a clear physical meaning.
Finite Element Analysis of the Mechanical Properties of Axially Compressed Square High-Strength Concrete-Filled Steel Tube Stub Columns Based on a Constitutive Model for High-Strength Materials.
阅读:2
作者:Li Biao, Ding Faxing, Lu Deren, Lyu Fei, Huang Shijian, Cao Zheya, Wang Haibo
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2022 | 起止号: | 2022 Jun 18; 15(12):4313 |
| doi: | 10.3390/ma15124313 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
