Hydrogels are an important class of biomaterials that permit cells to be cultured and studied within engineered microenvironments of user-defined physical and chemical properties. Though conventional 3D extrusion and stereolithographic (SLA) printing readily enable homogeneous and multimaterial hydrogels to be formed with specific macroscopic geometries, strategies that further afford spatiotemporal customization of the underlying gel physicochemistry in a non-discrete manner would be profoundly useful toward recapitulating the complexity of native tissue in vitro. Here, we demonstrate that grayscale control over local biomaterial biochemistry and mechanics can be rapidly achieved across large constructs using an inexpensive (~$300) and commercially available liquid crystal display (LCD)-based printer. Template grayscale images are first processed into a "height-extruded" 3D object, which is then printed on a standard LCD printer with an immobile build head. As the local height of the 3D object corresponds to the final light dosage delivered at the corresponding xy-coordinate, this method provides a route toward spatially specifying the extent of various dosage-dependent and biomaterial, forming/modifying photochemistries. Demonstrating the utility of this approach, we photopattern the grayscale polymerization of poly(ethylene glycol) (PEG) diacrylate gels, biochemical functionalization of agarose- and PEG-based gels via oxime ligation, and the controlled 2D adhesion and 3D growth of cells in response to a de novo-designed α5β1-modulating protein via thiol-norbornene click chemistry. Owing to the method's low cost, simple implementation, and high compatibility with many biomaterial photochemistries, we expect this strategy will prove useful toward fundamental biological studies and functional tissue engineering alike.
Rapid and Inexpensive Image-Guided Grayscale Biomaterial Customization via LCD Printing.
阅读:6
作者:Francis Ryan M, Kopyeva Irina, Lai Nicholas, Yang Shiyu, Filteau Jeremy R, Wang Xinru, Baker David, DeForest Cole A
| 期刊: | Journal of Biomedical Materials Research Part A | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr;113(4):e37897 |
| doi: | 10.1002/jbm.a.37897 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
