TRPC4 and TRPC5 proteins share 65% amino acid sequence identity and form Ca(2+)-permeable nonselective cation channels. They are activated by stimulation of receptors coupled to the phosphoinositide signaling cascade. Replacing a conserved glycine residue within the cytosolic S4-S5 linker of both proteins by a serine residue forces the channels into an open conformation. Expression of the TRPC4G503S and TRPC5G504S mutants causes cell death, which could be prevented by buffering the Ca(2+) of the culture medium. Current-voltage relationships of the TRPC4G503S and TRPC5G504S mutant ion channels resemble that of fully activated TRPC4 and TRPC5 wild-type channels, respectively. Modeling the structure of the transmembrane domains and the pore region (S4-S6) of TRPC4 predicts a conserved serine residue within the C-terminal sequence of the predicted S6 helix as a potential interaction site. Introduction of a second mutation (S623A) into TRPC4G503S suppressed the constitutive activation and partially rescued its function. These results indicate that the S4-S5 linker is a critical constituent of TRPC4/C5 channel gating and that disturbance of its sequence allows channel opening independent of any sensor domain.
Conserved gating elements in TRPC4 and TRPC5 channels.
阅读:3
作者:Beck Andreas, Speicher Tilman, Stoerger Christof, Sell Thomas, Dettmer Viviane, Jusoh Siti A, Abdulmughni Ammar, Cavalié Adolfo, Philipp Stephan E, Zhu Michael X, Helms Volkhard, Wissenbach Ulrich, Flockerzi Veit
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2013 | 起止号: | 2013 Jul 5; 288(27):19471-83 |
| doi: | 10.1074/jbc.M113.478305 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
