Effect of temperature on the carbonization process of cationic carbon dots: a physicochemical and in vitro study.

阅读:4
作者:Santos Nicolás, Santana Paula A, Osorio-Roman Igor, Jara-Gutiérrez Carlos, Villena Joan, Ahumada Manuel
This work highlights the critical role of synthesis conditions in tuning the properties of carbon dots (CDs) for optimized performance in biomedical applications, offering valuable insights into the design of these carbon nanomaterials. Although various synthesis methods and carbon sources have been explored for CD production, few studies have investigated how synthesis temperature modulates and optimizes their physicochemical attributes. In this study, cationic CDs derived from poly(ethylene imine) (PEI) and chitosan (CS) were synthesized using a microwave-assisted hydrothermal method at different temperatures to explore this aspect. It was found that higher carbonization temperatures during the hydrothermal process resulted in smaller, more photoluminescent CDs. This increase in temperature significantly enhanced the biological interactions of the CDs, demonstrating notable biocompatibility. In contrast, the lowest hydrothermal temperature enhanced cytotoxic effects against the Gram-positive pathogen Staphylococcus aureus under light exposure. Furthermore, gastric cancer (AGS), colon cancer (HT-29), cervical cancer (HeLa), prostate cancer (PC-3), and breast epithelial (MCF-10) cell lines showed cytotoxicity that was dependent on the CDs synthesized at different temperatures.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。