Data-Dependent Conditional Priors for Unsupervised Learning of Multimodal Data.

阅读:3
作者:Lavda Frantzeska, Gregorová Magda, Kalousis Alexandros
One of the major shortcomings of variational autoencoders is the inability to produce generations from the individual modalities of data originating from mixture distributions. This is primarily due to the use of a simple isotropic Gaussian as the prior for the latent code in the ancestral sampling procedure for data generations. In this paper, we propose a novel formulation of variational autoencoders, conditional prior VAE (CP-VAE), with a two-level generative process for the observed data where continuous z and a discrete c variables are introduced in addition to the observed variables x. By learning data-dependent conditional priors, the new variational objective naturally encourages a better match between the posterior and prior conditionals, and the learning of the latent categories encoding the major source of variation of the original data in an unsupervised manner. Through sampling continuous latent code from the data-dependent conditional priors, we are able to generate new samples from the individual mixture components corresponding, to the multimodal structure over the original data. Moreover, we unify and analyse our objective under different independence assumptions for the joint distribution of the continuous and discrete latent variables. We provide an empirical evaluation on one synthetic dataset and three image datasets, FashionMNIST, MNIST, and Omniglot, illustrating the generative performance of our new model comparing to multiple baselines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。