New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.
Destabilization of the human RED-SMU1 splicing complex as a basis for host-directed antiinfluenza strategy.
阅读:3
作者:Ashraf Usama, Tengo Laura, Le Corre Laurent, Fournier Guillaume, Busca Patricia, McCarthy Andrew A, Rameix-Welti Marie-Anne, Gravier-Pelletier Christine, Ruigrok Rob W H, Jacob Yves, Vidalain Pierre-Olivier, Pietrancosta Nicolas, Crépin Thibaut, Naffakh Nadia
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2019 | 起止号: | 2019 May 28; 116(22):10968-10977 |
| doi: | 10.1073/pnas.1901214116 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
