Development of scalable and generalizable machine learned force field for polymers.

阅读:5
作者:Mohanty Shaswat, Stevenson James, Browning Andrea R, Jacobson Leif, Leswing Karl, Halls Mathew D, Afzal Mohammad Atif Faiz
Understanding and predicting the properties of polymers is vital to developing tailored polymer molecules for desired applications. Classical force fields may fail to capture key properties, for example, the transport properties of certain polymer systems such as polyethylene glycol. As a solution, we present an alternative potential energy surface, a charge recursive neural network (QRNN) model trained on DFT calculations made on smaller atomic clusters that generalizes well to oligomers comprising larger atomic clusters or longer chains. We demonstrate the validity of the polymer QRNN workflow by modeling the oligomers of ethylene glycol. We apply two rounds of active learning (addition of new training clusters based on current model performance) and implement a novel model training approach that uses partial charges from a semi-empirical method. Our developed QRNN model for polymers produces stable molecular dynamics (MD) simulation trajectory and captures the dynamics of polymer chains as indicated by the striking agreement with experimental values. Our model allows working on much larger systems than allowed by DFT simulations, at the same time providing a more accurate force field than classical force fields which provides a promising avenue for large-scale molecular simulations of polymeric systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。