Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action

具有独特作用方式的细胞通透性动力蛋白抑制剂二萘吡唑的化学结构指导设计

阅读:13
作者:Jonathan B Steinman, Cristina C Santarossa, Rand M Miller, Lola S Yu, Anna S Serpinskaya, Hideki Furukawa, Sachie Morimoto, Yuta Tanaka, Mitsuyoshi Nishitani, Moriteru Asano, Ruta Zalyte, Alison E Ondrus, Alex G Johnson, Fan Ye, Maxence V Nachury, Yoshiyuki Fukase, Kazuyoshi Aso, Michael A Foley, Vl

Abstract

Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that transport cellular cargos toward microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has in part been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally constrained isosteres. These studies identified dynapyrazoles, inhibitors more potent than ciliobrevins. At single-digit micromolar concentrations dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Further, we find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles strongly block only microtubule-stimulated activity. Together, our studies suggest that chemical-structure-based analyses can lead to inhibitors with improved properties and distinct modes of inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。