Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis.

阅读:3
作者:Garvey E P, Hoekstra W J, Schotzinger R J, Sobel J D, Lilly E A, Fidel P L Jr
Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。