In many situations it is behaviorally relevant for an animal to respond to co-occurrences of perceptual, possibly polymodal features, while these features alone may have no importance. Thus, it is crucial for animals to learn such feature combinations in spite of the fact that they may occur with variable intensity and occurrence frequency. Here, we present a novel unsupervised learning mechanism that is largely independent of these contingencies and allows neurons in a network to achieve specificity for different feature combinations. This is achieved by a novel correlation-based (Hebbian) learning rule, which allows for linear weight growth and which is combined with a mechanism for gradually reducing the learning rate as soon as the neuron's response becomes feature combination specific. In a set of control experiments, we show that other existing advanced learning rules cannot satisfactorily form ordered multi-feature representations. In addition, we show that networks, which use this type of learning always stabilize and converge to subsets of neurons with different feature-combination specificity. Neurons with this property may, thus, serve as an initial stage for the processing of ecologically relevant real world situations for an animal.
Unsupervised learning of perceptual feature combinations.
阅读:7
作者:Tamosiunaite Minija, Tetzlaff Christian, Wörgötter Florentin
| 期刊: | PLoS Computational Biology | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Mar 5; 20(3):e1011926 |
| doi: | 10.1371/journal.pcbi.1011926 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
