Traumatic Brain Injury (TBI) is highly prevalent, affecting ~1% of the U.S. population, with lifetime economic costs estimated to be over $75 billion. In the U.S., there are about 50,000 deaths annually related to TBI, and many others are permanently disabled. However, it is currently unknown which individuals will develop persistent disability following TBI and what brain mechanisms underlie these distinct populations. The pathophysiologic causes for those are most likely multifactorial. Electroencephalogram (EEG) has been used as a promising quantitative measure for TBI diagnosis and prognosis. The recent rise of advanced data science approaches such as machine learning and deep learning holds promise to further analyze EEG data, looking for EEG biomarkers of neurological disease, including TBI. In this work, we investigated various machine learning approaches on our unique 24-hour recording dataset of a mouse TBI model, in order to look for an optimal scheme in classification of TBI and control subjects. The epoch lengths were 1 and 2 minutes. The results were promising with accuracy of ~80-90% when appropriate features and parameters were used using a small number of subjects (5 shams and 4 TBIs). We are thus confident that, with more data and studies, we would be able to detect TBI accurately, not only via long-term recordings but also in practical scenarios, with EEG data obtained from simple wearables in the daily life.
Classification of Electroencephalogram in a Mouse Model of Traumatic Brain Injury Using Machine Learning Approaches().
阅读:6
作者:Vishwanath Manoj, Jafarlou Salar, Shin Ikhwan, Dutt Nikil, Rahmani Amir M, Lim Miranda M, Cao Hung
| 期刊: | Annu Int Conf IEEE Eng Med Biol Soc | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2020 Jul;2020:3335-3338 |
| doi: | 10.1109/EMBC44109.2020.9175915 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
