The Blasius equation for laminar flow comes from the Prandtl boundary layer equations. In this article, we establish a new and generic Blasius equation for turbulent flow derived from the turbulent boundary layer equation that can be used for turbulent as well as laminar flow. The analytical and numerical solutions have been investigated under specific conditions to the developed new Blasius equation. The analytical and numerical results have been compared through tables and graphs to validate the established model. In fluid dynamics, analytical solutions to complicated systems are tedious and time-consuming. Changing one or more constraints can introduce new challenges. In this case, symbolic computation software provides an easier and more flexible solution for fluid dynamical systems, even if boundary conditions are adjusted to explain reality. Therefore, the MATLAB code is used to investigate the new third-order Blasius equation. The comparison and graphical representations demonstrate that the achieved results are encouraging.
Numerical and analytical solutions of new Blasius equation for turbulent flow.
阅读:3
作者:Rahman M Mizanur, Khan Shahansha, Akbar M Ali
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2023 | 起止号: | 2023 Mar 7; 9(3):e14319 |
| doi: | 10.1016/j.heliyon.2023.e14319 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
