Longitudinal imaging studies have moved to the forefront of medical research due to their ability to characterize spatio-temporal features of biological structures across the lifespan. Valid inference in longitudinal imaging requires enough flexibility of the covariance model to allow reasonable fidelity to the true pattern. On the other hand, the existence of computable estimates demands a parsimonious parameterization of the covariance structure. Separable (Kronecker product) covariance models provide one such parameterization in which the spatial and temporal covariances are modeled separately. However, evaluating the validity of this parameterization in high-dimensions remains a challenge. Here we provide a scientifically informed approach to assessing the adequacy of separable (Kronecker product) covariance models when the number of observations is large relative to the number of independent sampling units (sample size). We address both the general case, in which unstructured matrices are considered for each covariance model, and the structured case, which assumes a particular structure for each model. For the structured case, we focus on the situation where the within subject correlation is believed to decrease exponentially in time and space as is common in longitudinal imaging studies. However, the provided framework equally applies to all covariance patterns used within the more general multivariate repeated measures context. Our approach provides useful guidance for high dimension, low sample size data that preclude using standard likelihood based tests. Longitudinal medical imaging data of caudate morphology in schizophrenia illustrates the approaches appeal.
Separability tests for high-dimensional, low sample size multivariate repeated measures data.
阅读:4
作者:Simpson Sean L, Edwards Lloyd J, Styner Martin A, Muller Keith E
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014;41(11):2450-2461 |
| doi: | 10.1080/02664763.2014.919251 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
