Antiandrogenic and Estrogenic Activity Evaluation of Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons Using Chemically Activated Luciferase Expression Assays.

阅读:8
作者:Misaki Kentaro, Tue Nguyen Minh, Takamura-Enya Takeji, Takigami Hidetaka, Suzuki Go, Tuyen Le Huu, Takahashi Shin, Tanabe Shinsuke
To establish the risk of the endocrine disrupting activity of polycyclic aromatic compounds, especially oxygenated and nitrated polycyclic aromatic hydrocarbons (oxy-PAHs and nitro-PAHs, respectively), antiandrogenic and estrogenic activities were determined using chemically activated luciferase expression (CALUX) assays with human osteoblast sarcoma cells. A total of 27 compounds including 9 oxy-PAHs (polycyclic aromatic ketones and quinones) and 8 nitro-PAHs was studied. The oxy-PAHs of 7H-benz[de]anthracen-7-one (BAO), 11H-benzo[a]fluoren-11-one (B[a]FO), 11H-benzo[b]fluoren-11-one (B[b]FO), and phenanthrenequinone (PhQ) exhibited significantly the potent inhibition of AR activation. All nitro-PAHs exhibited high antiandrogenic activities (especially high for 3-nitrofluoranthene (3-NFA) and 3-nitro-7H-benz[de]anthracen-7-one (3-NBAO)), and the AR inhibition was confirmed as noncompetitive for 3-NFA, 3-NBAO, and 1,3-dinitropyrene (1,3-DNPy). Antiandrogenic activity of 3-NFA demonstrated characteristically a U-shaped dose-response curve; however, the absence of fluorescence effect on the activity was confirmed. The prominent estrogenic activity dependent on dose-response curve was confirmed for 2 oxy-PAHs (i.e., B[a]FO and B[b]FO). Elucidating the role of AR and ER on the effects of polycyclic aromatic compounds (e.g., oxy- and nitro-PAHs) to endocrine dysfunctions in mammals and aquatic organisms remains a challenge.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。