Orbital Decomposition of the Carbon Chemical Shielding Tensor in Gold(I) N-Heterocyclic Carbene Complexes.

阅读:5
作者:Izquierdo Maria A, Tarantelli Francesco, Broer Ria, Bistoni Giovanni, Belpassi Leonardo, Havenith Remco W A
The good performance of N-heterocyclic carbenes (NHCs), in terms of versatility and selectivity, has called the attention of experimentalists and theoreticians attempting to understand their electronic properties. Analyses of the Au(I)-C bond in [(NHC)AuL](+/0) (L stands for a neutral or negatively charged ligand), through the Dewar-Chatt-Duncanson model and the charge displacement function, have revealed that NHC is not purely a σ-donor but may have a significant π-acceptor character. It turns out, however, that only the σ-donation bonding component strongly correlates with one specific component of the chemical shielding tensor. Here, in extension to earlier works, a current density analysis, based on the continuous transformation of the current density diamagnetic zero approach, along a series of [(NHC)AuL](+/0) complexes is presented. The shielding tensor is decomposed into orbital contributions using symmetry considerations together with a spectral analysis in terms of occupied to virtual orbital transitions. Analysis of the orbital transitions shows that the induced current density is largely influenced by rotational transitions. The orbital decomposition of the shielding tensor leads to a deeper understanding of the ligand effect on the magnetic response properties and the electronic structure of (NHC)-Au fragments. Such an orbital decomposition scheme may be extended to other magnetic properties and/or substrate-metal complexes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。