Orbital Decomposition of the Carbon Chemical Shielding Tensor in Gold(I) N-Heterocyclic Carbene Complexes.

阅读:8
作者:Izquierdo Maria A, Tarantelli Francesco, Broer Ria, Bistoni Giovanni, Belpassi Leonardo, Havenith Remco W A
The good performance of N-heterocyclic carbenes (NHCs), in terms of versatility and selectivity, has called the attention of experimentalists and theoreticians attempting to understand their electronic properties. Analyses of the Au(I)-C bond in [(NHC)AuL](+/0) (L stands for a neutral or negatively charged ligand), through the Dewar-Chatt-Duncanson model and the charge displacement function, have revealed that NHC is not purely a σ-donor but may have a significant π-acceptor character. It turns out, however, that only the σ-donation bonding component strongly correlates with one specific component of the chemical shielding tensor. Here, in extension to earlier works, a current density analysis, based on the continuous transformation of the current density diamagnetic zero approach, along a series of [(NHC)AuL](+/0) complexes is presented. The shielding tensor is decomposed into orbital contributions using symmetry considerations together with a spectral analysis in terms of occupied to virtual orbital transitions. Analysis of the orbital transitions shows that the induced current density is largely influenced by rotational transitions. The orbital decomposition of the shielding tensor leads to a deeper understanding of the ligand effect on the magnetic response properties and the electronic structure of (NHC)-Au fragments. Such an orbital decomposition scheme may be extended to other magnetic properties and/or substrate-metal complexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。