Beta vulgaris L. is an edible plant with health-beneficial activities. The profile of betaxanthins is more complex than previously described in beetroot cultivars. Twenty-four betaxanthins were detected in extracts of the peel and flesh of five cultivars by HPLC-DAD-ESI-MS, of which two new betaxanthins (arginine-Bx and ornithine-Bx) were detected for the first time in B. vulgaris cultivars. The content of betaxanthins in the studied cultivars decreased in the Tytus > Ceryl > Chrobry > Forono > Boldor sequence. The highest content of compounds (1231 mg/100 g DE) was observed in the Tytus cultivar (peel). The peel of B. vulgaris, which is often considered a waste, appeared to be a richer source of betaxanthins compared to its flesh. Antibacterial and antifungal activities were determined against twenty-three microorganisms. Tytus (peel) showed a moderate or good bactericidal effect, especially against the majority of Gram-positive bacteria as well as against most of the tested fungi (MIC = 0.125-0.5 mg/mL) and additionally characterized by low cytotoxicity towards non-cancerous cells (CC(50) = 405 μg/mL, CC(50)-50% cytotoxic concentration). Tytus flesh also showed a high cytotoxicity value against human cervical adenocarcinoma (HeLa), with CC(50) of 282 μg/mL. Correlation analysis was used to determine the relationship between the betaxanthin profiles and antimicrobial and anticancer activities. Arginine-Bx, proline-Bx, and tryptophan-Bx were indicated as active against HeLa and the colon cancer cell line (RKO), while asparagine-Bx and phenylalanine-Bx was responsible for activity against all tested bacterial and yeast species. The significant effectiveness and safety of these beetroots make indicated compounds promising applicants as antimicrobial and anticancer agents.
Betaxanthin Profiling in Relation to the Biological Activities of Red and Yellow Beta vulgaris L. Extracts.
阅读:7
作者:Spórna-Kucab Aneta, Tekieli Anna, Grzegorczyk Agnieszka, ÅwiÄ tek Åukasz, Boguszewska Anastazja, Skalicka-Woźniak Krystyna
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2023 | 起止号: | 2023 Mar 9; 13(3):408 |
| doi: | 10.3390/metabo13030408 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
