Energy-guided synapse coupling between neurons under noise.

阅读:4
作者:Hou Bo, Ma Jun, Yang Feifei
From a physical viewpoint, any external stimuli including noise disturbance can inject energy into the media, and the electric response is regulated by the equivalent electric stimulus. For example, mode transition in electric activities in neurons occurs and kinds of spatial patterns are formed during the wave propagation. In this paper, a feasible criterion is suggested to explain and control the growth of electric synapse and memristive synapse between Hindmarsh-Rose neurons in the presence of noise. It is claimed that synaptic coupling can be enhanced adaptively due to energy diversity, and the coupling intensity is increased to a saturation value until two neurons reach certain energy balance. Two identical neurons can reach perfect synchronization when electric synapse coupling is further increased. This scheme is also considered in a chain neural network and uniform noise is applied on all neurons. However, reaching synchronization becomes difficult for neurons in presenting spiking, bursting, and chaotic and periodic patterns, even when the local energy balance is corrupted to continue further growth of the coupling intensity. In the presence of noise, energy diversity becomes uncertain because of spatial diversity in excitability, and development of regular patterns is blocked. The similar scheme is used to control the growth of memristive synapse for neurons, and the synchronization stability and pattern formation are controlled by the energy diversity among neurons effectively. These results provide possible guidance for knowing the biophysical mechanism for synapse growth and energy flow can be applied to control the synchronous patterns between neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。