Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival.

阅读:3
作者:Hammerman Peter S, Fox Casey J, Birnbaum Morris J, Thompson Craig B
The Akt kinases promote hematopoietic cell growth and accumulation through phosphorylation of apoptotic effectors and stimulation of mTOR-dependent translation. In Akt-transformed leukemic cells, tumor growth can be inhibited by the mTOR inhibitor rapamycin, and clinical trials of rapamycin analogs for the treatment of leukemia are under way. Surprisingly, nontransformed hematopoietic cells can grow and proliferate in the presence of rapamycin. Here, we show that Pim-2 is required to confer rapamycin resistance. Primary hematopoietic cells from Pim-2- and Pim-1/Pim-2-deficient animals failed to accumulate and underwent apoptosis in the presence of rapamycin. Although animals deficient in Akt-1 or Pim-1/Pim-2 are viable, few animals with a compound deletion survived development, and those that were born had severe anemia. Primary hematopoietic cells from Akt-1/Pim-1/Pim-2-deficient animals displayed marked impairments in cell growth and survival. Conversely, ectopic expression of either Pim-2 or Akt-1 induced increased cell size and apoptotic resistance. However, though the effects of ectopic Akt-1 were reversed by rapamycin or a nonphosphorylatable form of 4EBP-1, those of Pim-2 were not. Coexpression of the transgenes in mice led to additive increases in cell size and survival and predisposed animals to rapid tumor formation. Together, these data indicate that Pim-2 and Akt-1 are critical components of overlapping but independent pathways, either of which is sufficient to promote the growth and survival of nontransformed hematopoietic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。