One of the major obstacles to the micropropagation of Prunus rootstocks has, up until now, been the lack of a suitable tissue culture medium. Therefore, reformulation of culture media or modification of the mineral content might be a breakthrough to improve in vitro multiplication of G à N15 (garnem). We found artificial neural network in combination of genetic algorithm (ANN-GA) as a very precise and powerful modeling system for optimizing the culture medium, So that modeling the effects of MS mineral salts ([Formula: see text], [Formula: see text], [Formula: see text], Ca(2+), K(+), [Formula: see text], Mg(2+), and Cl(-)) on in vitro multiplication parameters (the number of microshoots per explant, average length of microshoots, weight of calluses derived from the base of stem explants, and quality index of plantlets) of G à N15. Showed high R(2) correlation values of 87, 91, 87, and 74 between observed and predicted values were found for these four growth parameters, respectively. According to the ANN-GA results, among the input variables, [Formula: see text] and [Formula: see text] had the highest values of VSR in data set for the parameters studied. The ANN-GA showed that the best proliferation rate was obtained from medium containing (mM) 27.5 [Formula: see text], 14 [Formula: see text], 5 Ca(2+), 25.9 K(+), 0.7 Mg(2+), 1.1 [Formula: see text], 4.7 [Formula: see text], and 0.96 Cl(-). The performance of the medium optimized by ANN-GA, denoted as YAS (Yadollahi, Arab and Shojaeiyan), was compared to that of standard growth media for all Prunus rootstock, including the Murashige and Skoog (MS) medium, (specific media) EM, Quoirin and Lepoivre (QL) medium, and woody plant medium (WPM) Prunus. With respect to shoot length, shoot number per cultured explant and productivity (number of microshoots à length of microshoots), YAS was found to be superior to other media for in vitro multiplication of G à N15 rootstocks. In addition, our results indicated that by using ANN-GA, we were able to determine a suitable culture medium formulation to achieve the best in vitro productivity.
Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G Ã N15 Rootstock.
阅读:5
作者:Arab Mohammad M, Yadollahi Abbas, Shojaeiyan Abdolali, Ahmadi Hamed
| 期刊: | Frontiers in Plant Science | 影响因子: | 4.800 |
| 时间: | 2016 | 起止号: | 2016 Oct 19; 7:1526 |
| doi: | 10.3389/fpls.2016.01526 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
