With the advance of intelligent transportation system technologies, contributing factors to crashes can be obtained in real time. Analyzing these factors can be critical in improving traffic safety. Despite many crash models having been successfully developed for safety analytics, most models associate crash observations and contributing factors at the aggregate level, resulting in potential information loss. This study proposes an efficient Gaussian process modulated renewal process model for safety analytics that does not suffer from information loss due to data aggregations. The proposed model can infer crash intensities in the continuous-time dimension so that they can be better associated with contributing factors that change over time. Moreover, the model can infer non-homogeneous intensities by relaxing the independent and identically distributed (i.i.d.) exponential assumption of the crash intervals. To demonstrate the validity and advantages of this proposed model, an empirical study examining the impacts of the COVID-19 pandemic on traffic safety at six interstate highway sections is performed. The accuracy of our proposed renewal model is verified by comparing the areas under the curve (AUC) of the inferred crash intensity function with the actual crash counts. Residual box plot shows that our proposed models have lower biases and variances compared with Poisson and Negative binomial models. Counterfactual crash intensities are then predicted conditioned on exogenous variables at the crash time. Time-varying safety impacts such as bimodal, unimodal, and parabolic patterns are observed at the selected highways. The case study shows the proposed model enables safety analytics at a granular level and provides a more detailed insight into the time-varying safety risk in a changing environment.
Safety analytics at a granular level using a Gaussian process modulated renewal model: A case study of the COVID-19 pandemic.
阅读:5
作者:Lei Yiyuan, Ozbay Kaan, Xie Kun
| 期刊: | Accident Analysis and Prevention | 影响因子: | 6.200 |
| 时间: | 2022 | 起止号: | 2022 Aug;173:106715 |
| doi: | 10.1016/j.aap.2022.106715 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
