Color, proximate composition, bioactive compounds and antinutrient profiling of rose.

阅读:3
作者:Mallick Sharmila Rani, Hassan Jahidul, Hoque Md Azizul, Sultana Hasina, Kayesh Emrul, Ahmed Minhaz, Ozaki Yukio, Al-Hashimi Abdulrahman, Siddiqui Manzer H
Rose (Rosa sp.) is one of the most important ornamentals which is commercialize for its aesthetic values, essential oils, cosmetic, perfume, pharmaceuticals and food industries in the world. It has wide range of variations that is mostly distinguished by petal color differences which is interlinked with the phytochemicals, secondary metabolites and antinutrient properties. Here, we explored the color, bioactive compounds and antinutritional profiling and their association to sort out the most promising rose genotypes. For this purpose, we employed both quantitative and qualitative evaluation by colorimetric, spectrophotometric and visual analyses following standard protocols. The experiment was laid out in randomized complete block design (RCBD) with three replications where ten rose genotypes labelled R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 were used as plant materials. Results revealed in quantitative assessment, the maximum value of lightness, and the luminosity indicating a brightening of rose petals close to a yellow color from rose accessions R4, and R10, respectively which is further confirmed with the visually observed color of the respective rose petals. Proximate composition analyses showed that the highest amount of carotenoid and β-carotene was found in R10 rose genotype, anthocyanin and betacyanin in R7. Among the bioactive compounds, maximum tocopherol, phenolic and flavonoid content was recorded in R8, R6 and R3 while R1 showed the highest free radical scavenging potentiality with the lowest IC(50) (82.60 µg/mL FW) compared to the others. Meanwhile, the enormous variation was observed among the studied rose genotypes regarding the antinutrient contents of tannin, alkaloid, saponin and phytate whereas some other antinutrient like steroids, coumarines, quinones, anthraquinone and phlobatanin were also figured out with their presence or absence following qualitative visualization strategies. Furthermore, according to the Principal Component Analysis (PCA), correlation matrix and cluster analysis, the ten rose genotypes were grouped into three clusters where, cluster-I composed of R3, R4, R5, R8, cluster-II: R9, R10 and cluster-III: R1, R2, R6, R7 where the rose genotypes under cluster III and cluster II were mostly contributed in the total variations by the studied variables. Therefore, the rose genotypes R9, R10 and R1, R2, R6, R7 might be potential valuable resources of bioactive compounds for utilization in cosmetics, food coloration, and drugs synthesis which have considerable health impact.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。