In this study, plasma functionalized multiwalled carbon nanotubes, f-MWCNTs, were incorporated into a poly(ethyl methacrylate), PEMA, polymer matrix at different wt.% (0.005, 0.01, and 0.02 wt.%) to prepare nanocomposite films using the traditional solution casting method. The XRD, Raman spectroscopy, XPS, TGA, mechanical analysis and UV-Vis spectroscopy techniques were employed to investigate the effects of the wt.% of f-MWCNTs on the structure, spectroscopic and other physiochemical properties of the synthesized films. XRD analysis showed a monotonic change in the PEMA structure upon incorporation of f-MWCNTs at different wt.%. The XPS results showed an increase of oxygen-based functional groups C-O and O-C-O on the PEMA/f-MWCNTs/ composite films compared to pure PEMA. Raman spectroscopy results consistent with the XRD and XPS findings, confirming the homogeneous distribution of f-MWCNTs in the PEMA matrix. Thermal stability of f-MWCNTs/PEMA improved as the f-MWCNTs content increased. Optical studies showed a reduction in the bandgap energy as the f-MWCNTs content increased, accompanied by significant improvements in optical properties such as refractive index (n), extinction coefficient (k), dielectric constants (ε' and εâ³), and optical conductivity (Ï(opt)). Mechanical testing revealed enhancements in breaking strength, Young's modulus, yield stress, and elongation at break with increasing f-MWCNTs concentrations. Furthermore, the AC electrical conductivity of the films also improved, demonstrating better charge transport capabilities. These synergistic enhancements in optical, thermal, mechanical, and electrical properties make PEMA/f-MWCNTs nanocomposites promising candidates for advanced applications, including optoelectronic devices, optical components, and conductive packaging materials.
Understanding the impact of plasma functionalized MWCNTs on the structure, physicochemical and mechanical properties of PEMA.
阅读:4
作者:Farag Omar F, Eid N A M, Abdel-Fattah Essam M
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 8; 15(1):4755 |
| doi: | 10.1038/s41598-025-88246-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
